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Like acoustic couplers, modems generally use a different frequency for a 1 acoustic coupler.

and a 0. As an example, the Bell 103 modem sends data through telephone lines
at either 110 or 300 bits/s. The modem at one end of a telephone line uses 1070
Hz (for 1s) and 1270 Hz (for Os) to send, while the modem at the other end uses
2025 Hz (for 1s) and 2225 Hz (for Os). The reason for the two sets of frequencies
is that transmission can be in either direction, and while one modem is transmitting
a character, the other will still be sending its high (mark) frequency. (A single
telephone line handles communications in both directions. Both ends can talk at
the same time. You can, for instance, interrupt someone who is talking.)

INPUT-OUTPUT DEVICES FOR SYSTEMS
WITH ANALOG COMPONENTS

7.14 Not all the inputs to digital machines consist of alphanumeric data. Com-

- puters used in data collection systems or in real-time control systems often must
measure the physical position of some device or must process electric signals which
are analog in nature. Consider a real-time control system in which a computer is
used automatically to point a telescope. If, by some system of gears, the position
of the telescope along an axis is related to the position of a shaft, the position of
this shaft may have to be read into the computer, giving the telescope’s pointing
angle. This will involve the translation of the shaft position into a binary-coded
number which can be read by the computer.
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Changing a physical displacement or an analog electric signal to a digital
representation is called analog-to-digital (A-to-D) conversion. Two major types of
A-to-D converters are (1) those that convert mechanical displacements to a digital
representation and (2) those that convert an electric analog signal to digital-coded
signals.

Suppose that an analog device has as its output a voltage which is to be used
by a digital machine. Let us assume that the voltage varies within the limits of 0
to 63 V dc. We can then represent the voltage values with a set of 6-bit numbers
ranging from 000000 to 111111. For each integer value the input voltage may
assume we assign a corresponding value of the 6-bit number. If the input voltage
is 20 V, the corresponding digital value will be 010100, and if the input voltage
is 5 V, the corresponding number will be 000101. If, however, the input signal is
20.249 V dc, the 6-bit binary number will not completely describe the input volt-
age, but will only approximate the input value. The process of approximating the
input value is called quantizing. The number of bits in the binary number which
represents the analog signal is the precision of the coder, and the amount of error
which exists between the digital output values and the input analog values is a
measure of thé accuracy of the coder.

Not only are the inputs to a computer sometimes in analog form, but it is
often necessary for the outputs of a computer to be expressed in analog form. An
example lies in' the use of a cathode-ray tube as an output device. If the output
from the computer is to be displayed as a position on an oscilloscope tube, then
in some systems the binary-coded output signals from the computer must be con-
verted to voltages or currents, which may be used to position the electron beam
and which are proportional to the magnitude of the output binary number repre-
sented by the computer’s output signals. This involves D-to-A conversion, and a
device that performs this conversion is called a D-t0-A converter. When digital
computers are used in control systems, it is generally necessary to convert the
digital outputs from the machine to analog-type signals, which are then used to
control the physical system.

DIGITAL-TO-ANALOG CONVERTERS

7.15 The most used digital-to-analog converters (DACs) convert a binary un-
signed number to either an electric voltage or an electric current. DACs which
convert from binary inputs to a voltage are discussed first.

A block diagram for a DAC is shown in Fig. 7.23(a). There are three input
lines X,, X, and X,, each of which will carry a binary 0 or 1. The number of
binary inputs is called the resolution of the DAC.* The output from this DAC
ranges from O to 7 V. A list of input-output relations for this DAC is shown in
Fig. 7.23(b). For each input value there is a corresponding analog output voltage
which in this case is equal to the value of the input as a binary integer. Examination
of this input-output relation will show that the output value can be calculated by
giving the input value X, a weight of 1 V, X, the weight of 2 V, and X, the weight
of 4 V. Then the output value is equal to the sum of the weights for which the X,

*Appendix G shows circuits for IC realization of DACs.
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are equal to 1. This is a general principle for DACs: Each input has a weight, and
the output voltage is the sum of the weights for which the binary inputs are 1s.

In this DAC, X, is the most significant bit (MSB) and X, the least significant
bit (LSB).

If a three-flip-flop counter with positive-edge triggering were connected to
the DAC’s three inputs with X, connected to the counter’s LSB and the counter
were clocked, the input-output relation would be as in Fig. 7.23(c). The analog
waveform shown here is called a staircase.

The minimum and maximum values which the analog output of a DAC can
take vary for different DACs. Some manufacturer’s DACs have only a single built-
in minimum and maximum while others allow users to introduce reference signals
which will control the minimum and maximum output voltages. In most cases the
minimum output voltage for a DAC will be 0 V.

If the maximum output voltage of a DAC is V volts® and if the resolution is
R bits, then the weight of the least significant bit will be V/(28 — 1). [For our
3-bit resolution 7-V maximum output, this gives 7/(2*> — 1) = 7/7 = 1 V.] The
weight of the second least significant bit will be 2V/(28 — 1), the next least
significant bit has weight 4V/(2% — 1), and so on up to the most significant bit
which has weight (28~")V/(2® — 1). [For our example this is (23=1)7/(2* - 1)
= 4]

. As a further example, if a DAC had a maximum output voltage of 10 V and
a resolution of 8 bits, the least significant bit would have weight.

10 10
_ = — =0 7
T = 555 = 0.039215

This means that if an 8-bit counter is connected to the DAC’s input, the staircase
at the output will have steps of 3% V from 0 to + 10 V, and there will be 256
steps (counting the O step).

Since actual DACs are made of physical devices, they are imperfect and will
have analog outputs which will not exactly be at the output for a *‘perfect’’ DAC.
To give the user some idea of the size of the DAC’s errors, the manufacturers of
DACs generally specify the accuracy of the converter. The absolute accuracy is
defined as the maximum difference between the actual DAC’s outputs and a perfect
DAC’s outputs divided by the maximum analog output value.

For example, if the maximum output for a 6-bit DAC is + 10 V, then the
“‘perfect’” output for a binary input of 000011 is 3 X 10/(2° — 1) = 0.4761905.
If the actual output is 0.465, then an error of 0.0111905 will exist; and if this is
the maximum error for all possible inputs, the absolute accuracy will be 0.0111905/10
= 0.111905 percent.

Sometimes manufacturers will simply specify the absolute value in general
terms such as “‘less than 3 LSB,”’ meaning that the maximum error between perfect
and actual values will never exceed half the weight of the least significant bit.

If the maximum error in a DAC is less than half the weight of the least signif-
icant bit, then the output will be monotonic, which means the output voltage will always

’Ia all these examples the DAC is assumed to have outputs ranging from 0 to V volts. DACs with
nonzero minimum values are dealt with later.



increase when the input value to the converter increases. For DACs with many bits
of resolution, the manufacturer will sometimes only specify that the DAC is mon-
otonic instead of giving an accuracy figure.

Some DACs can be set to have analog outputs which do not range from 0 to
a positive voltage, but rather are in an interval from V, to V,. (For instance. V|
might be —5 V and V, might be +10 V.) The same principles exist except that
the voltage V in the formulas for the weights is obtained by subtracting V, from
V, and weights are added to V, to obtain output values. This would give 15 for
the —5- to +10-V example, and the weight of the LSB for a 4-bit DAC with
lower voltage —5 V and maximum + 10 V would be 1 V. The outputs would then
be -5, -4, ~3,....,9.10.

When DACs have the ability to be set to some wnerval, the manufacturer
will generally specify two input lines to which the user can connect two input
voltages which will control the DAC’s upper and lower output limits.

ANALOG_-TO-DIGITAL CONVERTERS—SHAFT ENCODERS

7.16 The most used type of an analog-to-digital converter which directly con-
verts a physical position to a digital value is the shaft encoder. The shaft encoder
is connected to a rotating shaft and reads out the angular position of the shaft in
digital form.

In the A-to-D converter in Fig. 7.24(a), a coded-segment disk which can
rotate is coupled to a shaft. A set of brushes is ‘attached so that a single brush is
positioned in the center of each concentric band of the disk. Each band is con-
structed of several segments made of either conducting material (the darkened
areas) or some insulating material (the unshaded areas). A positive voltage is
connected to the conducting sections. If a given brush makes contact with a segment
of conducting material, a 1 signal will result; but if the brush is over the insulating
material, the output from the brush will be a 0. The four output lines of the coder
shown represent a 4-bit binary number. There are 16 distinct intervals around the
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coder disk, each corresponding to a different shaft-position interval, and each
causes the coder to have a different binary number output.

Photoelectric coders are constructed by using a coder disk with bands divided
into transparent segments (the shaded areas) and opaque segments (the unshaded
areas). A light source is put on one side of the disk, and a set of photoelectric cells
on the other side, arranged so that one cell is behind each band of the coder disk.
If a transparent segment is between the light source and a light-sensitive cell, a 1
output will result; and if an opaque area is in front of the photoelectric cell, there
will be a O output. By increasing the number of bands around the disk, more
precision may be added to the coder. The photoelectric type of coder has greater
resolution than the brush type, and even greater resolution may be obtained by
using gears and several disks. The state of the art is about 18 bits or 2'® positions
per shaft revolution, but most commercial coders have 14 bits or fewer.

There is one basic difficulty with the coder illustrated: If the disk is in a
position where the output number is changing from 011 to 100, or in any position
where several bits are changing value, the output signal may become ambiguous.
Since the brushes are of finite width, they will overlap the change in segments;
and no mattér how carefully it is made, the coder will have erroneous outputs in
several positions. If this occurs when 011 is changing to 100, several errors are
possible; the value may be read as 111 or 000, either of which is a value with
considerable error. To circumvent this difficulty, a number of schemes have been
devised, generally involving two sets of brushes with one set displaced slightly
from the other. By logically choosing from the outputs available, the ambiguity
may be eliminated at a slight cost in accuracy.

Another scheme for avoiding ambiguity involves the use of a Gray, or unit-
distance, code to form the coder disk [Fig. 7.24(b)]. In this code. 2 bits never
change value in successive coded binary numbers. By using a Gray-coded disk, a
6 may be read for a 7 or a 4 for a 5, but larger errors will not be made. Table 7.2
shows a listing of a 4-bit Gray code.

If the inputs to the machine are from a coder using a Gray code, the code
groups must be converted to conventional binary or BCD before use.

TABLE 7.2

GRAY CODE
DECIMAL a,3,8,8,




There are straightforward ways to convert from Gray to binary or binary to
Gray code. The conversion from binary to Gray code is as follows:

1  The leftmost digit of the binary number is also the leftmost digit of the Gray
code.

2 The mod 2 sum (00 = 11 = 0and 1H0 = 0PI = 1) of the two
leftmost digits in the binary number will give the second leftmost digit in the Gray
code.

3 The mod 2 sum of the second and third digits of the binary number give the
third leftmost digit of the Gray code. This rule continues until the mod 2 sum of
the two rightmost digits of the binary number give the rightmost Gray code digit.

Here is an example of conversion of 0111 binary to Gray code:

0111 binary
0 leftmost digit

0l =1 2d leftmost digit
11 =0 next digit
161 =0 rightmost digit

So Gray code for 0111 binary is 0100.
Here is an example of conversion from 1010 binary to Gray code:

1010 binary
1 leftmost digit

140 = 1 2d leftmost digit
01 = 1 next digit
160 = 1 rightmost digit

Thus Gray code for 1010 binary is 1111.
Here is a five-digit example of converting 10111 to Gray code:

10111 binary
1 leftmost digit

190 = 1 next digit
01 = 1 next digit
161 =0 next digit
1d1 =0 rightmost digit

So 10111 binary is 11100 in Gray code.

ANALOG-TO-DIGITAL CONVERTERS

7.17 When an analog voltage must be converted to a digital number, an analog-
to-digital converter (ADC) is used. Figure 7.25(a) shows the block diagram symbol
for a small ADC with a single analog input and 3 binary bits of output. The
CONVERT input is normally a 0 and is changed to a | signal when a conversion
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is to occur. The ADC responds to the position transition on CONVERT by measur-
ing the input voltage on the analog input and then outputting a binary number on
the X outputs which represents the input voltage in digital form.

Converting an analog input signal such as a voltage to a digital number is
called quantizing the input. Since the input can take infinitely many different volt-
age values and the digital representatioris will have only some finite number of
values, each digital number at the output actually covers an interval of input values.

Figure 7.25(b) shows a graph of the input signal versus digital output numbers
for a 2-bit ADC. The input voltage range is to be from 0 to 3 V, and the digital
numbers at the outputs will range from 00 to 11. The output number 00 indicates
the input voltage is in the interval from 0 to 0.5 V, the output number 01 indicates
an input voltage value from 0.5 to 1.5 V, the number 10 indicates an input from
1.5t0 2.5V, and the number 11 indicates an input of greater than 2} V.

This is the normal and most used system for ADCs. In this case, for example,
the input voltage interval for the output number 01 has its center at 1 V, the interval



for 10 has its center at 2 V, etc. This means when the ADC reads out a 10, for
example, the input is 2 V plus or minus 3 V, as we would expect.

Figure 7.25(c) shows the intervals for a 3-bit converter which has a normal
input voltage range from 0 to 7 V. In this example, the output 011 indicates the
input voltage is 3V = 3 V.

The final graph in Fig. 7.25(d) shows an analog input along the horizontal
axis and digital values along the vertical axis. This graph is included in many
manufacturers’ manuals and specification sheets and again shows that the O interval
is half the size of the other intervals which are of the same size (except that the
final interval extends on).

In many converters there is an overrange feature to handle inputs outside the
normal interval. This generally consists of an output line which indicates the input
is ‘‘out of range’’ when it is 1.°

FLASH CONVERTERS

7.18 The fastest ADCs are called simultaneous, or flash, converters. Figure
7.26(a) shows a flash converter with two digital output lines X, and X,. This
converter realizes the converter input-output relations for Fig. 7.25(b).

The converter uses an analog circuit called a comparator. The block diagram
symbol for a comparator is a triangle on its side. When the voltage at the upper
(+) input to a comparator is relatively positive with respect to the lower (—) input,
the comparator outputs a digital 1; when the upper input is negative with respect
to the lower input, the comparator outputs’ a digital 0. As an example, the lowest
comparator in Fig. 7.26 has a lower (—) input of 7 V. If the INPUT is at } V, the
comparator will have a 0 output; but if the INPUT is at § V, the comparator will
have a 1 output. A

Analysis of the operation of this flash converter is as follows. (1) If the
INPUT is at 0 to 4 V, the three points A, B, and C will all be Os and the X, and
X, outputs will also be 0s. (2) If the input is from 4 to 13 V, then points A and B
will be'0s but point C will be a 1, and the X, output will be a 1 and the X, output
a 0. (3) If the INPUT is between 13 and 23 V, points B and C will be 1s and A a
0, giving X, = 1 and X, = 1. (4) If the INPUT is greater than 2§ V, then A, B,
and C will be Is and the output will be X, = 1 and X, = 1

This example of a small flash converter shows the basic parts: the reference
voltages, the comparators, and a gate network to connect the outputs from the
comparators to the proper binary number.

Figure 7.27(a) shows a block diagram of a 6-bit flash converter which is
packaged in a single IC container. This ADC operates at up to 100 million con-
versions per second. The resistor chain at the left provides the correct reference
voltages for the inputs to the comparators. The CONV and CONV inputs which

°The overrange feature reduces the size of the first highest output interval to half the size of the other
interval. -
“The output of a comparator is unspecified when both inputs are equal (it can be a 0 or 1).
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control conversions operate as follows: When the CONV is made a 1, the outputs
from the 63 comparators go into the 63 latches (flip-flops) to their right. The C on
the latches is the clock input which works on a positive 1 level. When CONV goes
to 0, this transfers the outputs from these latches into the latches to their right. The
ROM contains the conversion codes for the inputs from the latches, converting
these inputs to the correct binary number. This ROM replaces the gate network
shown in the preceding figure and provides an example of how ROMs and gate
networks are sometimes interchangeable. When CONYV is next a 1, the outputs -
from the ROM are transferred into the latches to its right. These latches now contain
the correct conversion number. Finally, when CONV is made a 1, the output latches
take the six output values for the ADC. (The triangles to the right of these latches
are simply amplifiers or buffers providing drive for chip output; they do not shift
0 and 1 output levels from the latches.) Notice the upper and lower voltages which
establish the interval through which the ADC converters are set by connecting the
desired voltages to the RT and RB inputs to the ADC’s container.

FiGURE 7.27

A high-speed flash A-to-D converter. (Cour-
tesy TRW, LSI Products Division) (a) Block
diagram of 6-bit 100-MHz flash converter.
(b) Waveforms for flash converter in (a).
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Figure 7.27(b) shows the waveforms for conversion.

Flash converters come in many sizes and speeds. The fastest single-chip
converters now perform 8-bit conversions at a 100 million conversions per second
rate, but smaller, slower, less expensive devices are readily available.

The principal problem with flash converters is the large number of compar-
ators required as the number of output bits increases. For an n-bit converter,
2" — 1 comparators are needed, and this involves considérable circuitry if n is
very large. :

COUNTER AND SUCCESSIVE-APPROXIMATION CONVERTERS

7.19 Quite often ADCs are made from a DAC and some flip-flops and other
logic. These ADCs are generally slower than the flash ADCs but are less expensive
and ordinarily have more output bits (resolution) and thus greater accuracy. (Flash
converters can be combined to give more bits, but more logic and one or more
DAC:s are required.)

The most conceptually straightforward nonflash ADC involves a binary counter,
a DAC, and a comparator and is called a counter ADC. The block diagram for a
counter ADC is shown in Fig. 7.28(a). This uses a 3-bit counter, a 3-bit input
DAC, and a comparator.

A conversion by this ADC is initiated by lowering the CONVERT line and
then raising it (this line is normally a I, so making it a 0 tells the ADC to convert).
The actual conversion begins when the CONVERT line is returned to the 1 state
which ““frees’’ the counter that has been reset. The CLOCK input is supplied with
clock signals continuously, and the three-flip-flop counter then begins to count.
Also while the CONVERT is down, the CONVERSION COMPLETE flip-flop is
set to 0 (CONVERT must be a 0 long enough for this flip-flop to be set).
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FIGURE 7.28

As the counter counts, the output from the DAC begins to increase in voltage®
as shown in Fig. 7.28(b). Until the output from the DAC exceeds the analog input
voltage, the comparator output will be a 0 and the JK inputs to the counter will be
Is (notice the inverter) and so the counter will count. When the DAC’s output
exceeds the analog input, the counter will be stopped and the CONVERSION
COMPLETE signal will go to 1, indicating the conversion is complete.

*Note the DAC is biased +4 V positive. That is, a 0 input to the DAC would give a +4 V output.
The DAC then increases its output voltages in 1-V steps as the counter is incremented.

Counter ADC.

(a) Block diagram.

(b) Waveforms.
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As can be seen, the counter ADC is less expensive but slower than the flash
converter. Another type of ADC, called a tracking ADC, simply follows the analog
input up and down continuously, giving a continuous output of its value. This is
formed by connecting the flip-flops in an up-down counter and then connecting the
comparator’s output to the DOWN input and the inverted comparator’s output to
the UP input. In this way the counter-DAC combination will continually track the
analog input signal.

The most used ADC of this general type is the successive-approximation
ADC. Figure 7.29(a) shows an ADC similar to the counter ADC but with control
logic where the counter logic was. This ADC works as follows. First, all flip-flops
are set to 0. Then the most significant bit (MSB) is set to 1. The output of the
comparator is examined by the control logic: if it is a 1, the MSB flip-flop (the
flip-flop connected to the MSB of the DAC) is turned off; if it is a 0, the flip-flop
is left on. Next the second least significant bit’s flip-flop is turned on. Again, if
the comparator’s output is a 1, the flip-flop is turned off; if the comparator’s output
is a 0, then the flip-flop is left on. This continues for each flip-flop up to and
including the LSB flip-flop. Thus the final number in the flip-flop will represent
the input voltage.

Figure 7.29(b) shows the waveform for a 3-bit successive-approximation
ADC.

The important thing to notice is that a counter ADC with n binary outputs
can take up to 2" — 1 clock signals to convert an input and will take (2" — 1)/2
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steps on the average. The successive-approximation ADC requires only n clock
signals or steps to make each conversion. For a 12-bit ADC then, the successive-
approximation ADC would require 12 steps while the counter ADC would require
4095/2 steps on average and could require up to 4095.

ADCs are packaged in IC containers or on printed-circuit boards when several
IC chips are used; they are also sold in instrument cabinets. The block diagram
and input-output signal lines for a 12-bit ADC which uses the successive-approx-
imation technique and has a 3-ps conversion time are shown in Fig. 7.30(a) and
(¢). Waveforms for this device are seen in Fig. 7.30(b). Lowering WR to 0 initiates
a conversion. At this time the ACK line goes high (a 1), and’it goes back to
0 when the conversion is complete. Data are read from the chip in two steps. ® (In
order to conserve on in/out connections, the data output lines are time-multi-
plexed.) When RD is low, the ADC outputs appear on D, to D. If C/ D is low,
when RD is low, the 8 least significant bits are output on D, to D,. If C/D s high,
the 4 most significant bits appear on D, to D;. CS is a chip select input (as in
memories) which enables the ADC when low (a 0); holding this line high disables
the chip (this permits easy connection to microcomputer buses). GND, is analog
ground, and GND,, is digital ground.

The outputs and inputs are TTL levels; approximately 0 V =
35V = 1.

0 and

COMPUTER DATA ACQUISITION SYSTEMS

7.20 Computer data acquisition and computer control systems are important
areas in computer technology. Computers have long been used to make measure-
ments in laboratories and to monitor and control manufacturing processes. Machine

These outputs utilize three-state drivers which are explained in Chap. 8.
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tools are often controlled by computers as are plastic forming machines and other
industrial devices. Now the advent of microprocessors is moving the level of control
down to consumer items such as automobiles, stoves, temperature control of houses,
etc. For example, for some time the automobile industry has used computers to
test motors and perform other manufacturing operations. Now cars themselves have
computer controls. Some Ford models use a microcomputer-based logic control
system with inputs from six sensors. A vane airflow meter in the air induction
system outputs a voltage proportional to the amount of air drawn into the engine.
The temperature of this air is also measured by a second sensor while still another
gives engine temperature. The amount of free oxygen in the exhaust gas is measured,
too, as is the crankshaft position. By using data from these sensors as input, the
ignition spark timing is set, and the amount of fuel discharged through the injector
nozzles is controlled, as is the exhaust-gas recirculation system. Other manufac-
turers use computers to control transmissions, shock absorber pressure, fuel pumps,
etc.

All the above applications rely on the measuring of analog inputs by com-
puter, which involves extensive use of ADCs. As may be seen, in these and in
laboratory data systems, blood processing laboratories, computer patient monitor-
ing, and many other such systems, different sensors must be monitored by the
computer continuously. This general area is called data acquisition and is rapidly
expanding.

Figure 7.31(a) shows a section of a waveform to be monitored by a computer.
This waveform is to be sampled periodically, and the value at sample points input
to the computer.

The sampling process is not perfect, however. If counter or successive-ap-
proximation types of ADCs are used, the conversion times are liable to be long;
and if the signal is changing during the conversion process, the output from the
ADC can represent almost any point in the sampling interval. Figure 7.31(b) shows
an expanded section of waveform, and clearly the output from the ADC could be
from any point on this curve.

The indeterminacy in output value caused by the change of input during the
sample interval may or may not be important. However, if the analog signal changes
rapidly so that a significant change can occur during the sample interval, then
mathematical analyses of the digital inputs, or attempts to reconstruct the original
input signal from the sample values, can be severely degraded.

To alleviate this problem, a device called a sample-and-hold amplifier is
often used. Figure 7.31(c) shows a functional representation of this device (it is
an electronic circuit on a chip) and a block diagram symbol. The sample-and-hold
amplifier works as follows: When a positive pulse is placed on the SAMPLE input,
the current value at the input is placed on the OUTPUT and the value remains
there until the SAMPLE input again is given a positive pulse. The functional
representation shows a relay whose contacts are closed by the positive edge on the
SAMPLE input and then opened by the negative edge of the positive pulse. (In
actual practice, a high-speed semiconductor switch is used—not a relay.) When
the contacts of the relay are closed, the leftmost amplifier charges the capacitor to
the INPUT value. When the contacts are opened, the capacitor stores this value
until the contacts are again closed.
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Figure 7.31(e) shows the output from a sample-and-hold amplifier with input
the waveform in (a) and sample points the same. Now, if an ADC is connected to
the sample and holds output and told to convert, then the analog output from the
sample-and-hold amplifier will be constant in the interval between the sample points
and the ADC will have a constant input to convert. Then the output of the ADC
will represent the value of the analog input at the time the sample-and-hold amplifier
was told to sample.

There are important considerations concerning the operation of a sample-and-
hold amplifier:

Sampling an analog
signal. (a) Waveform
to be sampled. (b)
Typical sample inter-
val. (¢) Functional
representation. (d)
Block diagram sym-
bol for sample-and-
hold amplifier. (e)
Output of sample-
and-hold amplifier
sampling waveform
in (a).
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1 The aperture time is the time elapsing between the command to hold and the
actual opening of the hold switch. (This can be as low a 1 ns for some switches.)

2  The settling time is the time required for the output to reach the input value
when the switch is closed. If the switch is closed by the positive edge of a pulse,
as in our example, and opened by the negative edge, then the time between positive
and negative edges (pulse width) must be long enough for the output value to
change from the prior to the new value. [This will involve charging the capacitor
in Fig. 7.31(e).] The manufacturer’s specification will give the settling time. Rea-
sonable figures might be a 10-ns aperture delay, 0.25-ns aperture jitter (variation
in delay), and 100-ns settling time.

3  Droop is the amount or rate of drift in the output between samples. A typical
figure would be 100 pV/us, which means a maximum change of 100 wV might
occur during 1 ps.

Another important device in data acquisition systems is the analog multi-
plexer, or AMUX. This is shown in Fig. 7.32(a). An AMUX has several analog
inputs [four are shown in Fig. 7.32(a)], enough digital select inputs to select one
of the analog inputs, and a single analog output. The function of the AMUX is to
select one of the analog inputs from several possible inputs by using the digital
select inputs and to output only this particular input. Figure 7.32(a) shows this in
the functional diagram by a rotary switch where the position of the wiper arm on
the switch selects and connects one of the four inputs to the output. In practice,
AMUXs are made of semiconductors and are often packaged in a single IC con-
tainer. The inputs and outputs are generally connected to amplifiers, and the switch
is a semiconductor switch.

As can be seen, each select value will cause a particular input to be output.
In Fig. 7.32(a), Sy, S; = 00 would cause A, to be output, 5,5, = 01 would output
A, etc. .

Figure 7.33 shows a typical data acquisition system. There are four analog
signals, Ay, A;, A,, and A,. Each is connected to the AMUX; the computer selects
from these inputs the one it wants to be sampled and places its number on §,S;.
Then the selected analog signal is connected to the sample-and-hold amplifier.
When the correct time for a sample occurs, the computer raises and lowers the
SAMPLE input, thereby causing the selected input voltage to be held at its value

Analog mul-
tiplexer. (a)
Functional
diagram of
four-input
analog mul-
tiplexer. ()
Block dia-
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at this particular time. Next the CONVERT signal to the ADC is raised, causing
the ADC to measure and output the value of the selected analog signal. The com-
puter can now read the output signal from the ADC and proceed to the sampling
of another signal.

With the above data acquisition system, the analog inputs can be sampled at
varying rates in case some signals change more rapidly than others or are more
critical than the others. Also, the exact time at which the sample was taken will
be known by the computer since it issues the SAMPLE signal (generally this signal
is combined with some precise timing source).

AMUXSs are produced with more than four analog inputs to handle large
systems. Sometimes several sample-and-hold amplifiers are used, and these are
connected to the analog inputs rather than the AMUX’s output. This makes it
possible to sample two or more imputs at the same time and to then read them by
addressing one and then the other, using the AMUX. ,

Sometimes the analog signals have voltage amplitudes which are outside the
normal range of the ADC. The sample-and-hold amplifiers (and sometimes the
AMUX) contain amplifiers which often can be set to accommodate these inputs,
increasing or decreasing signal values and even inverting (converting from negative
to positive) input values. There are also circuits for offsetting, or translating, input
signals which consists of adding a selected voltage to them, thereby changing their
range. This area’is called signal conditioning and generally involves the use of
operational amplifiers. Some material on this can be found in the Questions and
more in the Bibliography.

SUMMARY

7.21 This chapter presented an introduction to punched tapes, punched cards,
and the punches and readers for these input-output media.

Alphanumeric codes are widely used in computer-human interfaces, and these
were discussed and tables of the most used codes given.

Printers are the most used output devices, and they come in many kinds. The

~general operating characteristics of these and their principles of operaticn were

presented. Oscilloscope displays were also discussed.
A typical keyboard and its operation were discussed as was the operation of
terminals. '

Data acquisition sys-

tem.
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Digital-to-analog converters are used to convert binary output signals from
computers to analog signals which can be used to position mechanical (and other)
devices. Analog-to-digital converters are used to convert inputs from physical sys-
tems to digital form. The basic principles of both digital-to-analog and analog-to-
digital converters were presented followed by examples of each, including flash
and successive-approximation converters. The use of these devices in data collec-
tion and sampled data systems was discussed.

QUESTIONS

7.1 Using the code in Fig. 7.3, an operator keyboards the following:

ADD 641
CAD 932
SUB 841

How many lines will be punched in the paper tape? How many holes will be
punched in the tape?

7.2 The code in Fig. 7.3 is a parity-checking code. Is the parity check odd or
even?

7.3  Write out in binary form the first line of the program in Question 7.1, using
the code in Fig. 7.3.

7.4 The code in Fig. 7.3 has at least one punch or hole for each character. This
makes it possible for the reader to detect when to read. Explain the tape feed
character.

7.5  If the short program in Question 7.1 is punched into cards according to the
code in Fig. 7.5 by using normal procedures, how many holes will be punched
into the cards used? If a mistake is made during keyboarding, will it be easier to
correct if cards or tape are used? Explain why.

7.6 In EBCDIC, when the first 4 bits are 1s, the remaining 4 bits represent a
digit. Is the code for these bits BCD or straight binary? Give a reason for your
answer

7.7 Generally, programs are punched into cards with an instruction word per
card. The first line of the program in Question 7.1 would go on one card. How
many holes will be punched in the first card for the code in Fig. 7.57

7.8 The tape feed character can be used to take out any character in the code
in Fig. 7.3 except one. Which character and why? Hint: Remember the parity
checks.

7.9 List the binary-code groups for each decimal digit in the excess-3 BCD
code in Chap. 3, and assign a parity bit for an even-parity-bit checking system to
each code group. List the values of the parity bits for the same excess-3 code for
an odd-parity-bit checking system.

7.10 Discuss any problems you can foresee in attempting to read characters



optically which would not occur for magnetic characters. Do these reasons some-
what explain why banks adopted magnetic readers before optical readers?

7.11 Each of the following rows of digits consists of a code group in ASCIIL. A
single parity check has been added as the rightmost bit in each row, and a single
row of parity checks has been added at the end. as explained in Question 7.15. In
addition. errors have been added so that the data are not correct at present. Correct
these groups of data, and then convert each seven-digit character to the alpha-
numeric character it represents. The parity checks are odd-parity checks.

(@) 10101000 {b) 10001001
10010001 10011110
10000011 10011101
10101000 01001111
01001111 10101000
10100111 01001000
01100000 10100111
10000100 10101000
10110010 10011110
10001111 10100001
10010001 01011011
10101000 10111001 parity-check row

11000101 parity-check row

7.12 Using the error-detecting and error-correcting scheme in Question 7.11, a
message has been sent. It arrives as below. Determine whether errors have occurred
and correct any you find in the following message:

10100100
10000010
10001101
10010001
10101000
Olt1tLLl

7.13 How many bands must a coder disk similar to that shown in Fig. 7.24 have
for an A-to-D converter that has a precision of 10 binary digits? List the successive
code groups for a 5-bit unit-distance Gray code which counts from 0 to 31,.

7.14 A 3, 3, 2, 1 code for encoding the 10 decimal digits into 4 binary digits
can be made so that no more than two positions change each time a single digit is
increased by 1. Write this code down.

7.15 More powerful parity-check systems can be formed by adding columns with
the number of 1s in each column written at the end as a binary number. For
instance, if we wish to encode

1011
1101
1100
1110
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we add

0

0 .

1 parity checks

0
01001
01110 number of 1s in each column
10000

1“indicates two Is

indicates four 1s

Adding this to the data forms this encoded block of data:

10110
11010
11001
11100
01001
01110 pcheck digits
10000

Now if one or more errors occur in the same column, they can be corrected by
simply noting that the column does not agree with the number of 1s recorded at
the end, and that there are parity checks in the rows of the block of data containing
errors. By simply changing these errors, we convert the message back to its original
form.

Here are two other blocks of data which include errors. Correct the errors in
these blocks of data, and write the alphanumeric code for each set of seven digits
in a row to the right of the rows. The code is that of Fig. 7.7, so the parity checks
are as indicated in the figure, and not in the rightmost column.

(@) 00100011 (b) 01100010
01101010 01000001
01100011 01000100
00100001 00010000
00110010 00100011
00010000 01100001
01110110 01010111
01111001 01110101
01000101 00110010
01110101 00010000
00010100 00110101
g;g%é?: check digits g};?g(l)‘l)? check digits

00100000 00000000



7.16 If the ASCII code in Fig. 7.7 is transmitted serially in binary, draw the
waveform for the character 6, assuming a 1 is +4 VandaQis —4 V.

7.17 Put errors into the message in Question 7.12 which the coding will neither
correct nor detect.

7.18 Characters are generally read from punched paper tape a line at a time.
When the code in Fig. 7.3(a) is used, the computer will be supplied with infor-
mation bits each time a line is read. If the computer used is a serial computer, the
bits will arrive in parallel and must be changed to serial form. By loading a seven-
place shift register in parallel and then shifting the register at the machine’s pulse-
repetition frequency, the bits representing the character can be converted to serial
form. Draw a block diagram of a seven-flip-flop shift register, along with the input
lines necessary to load the register. (Assume that there are seven input lines—one
to each flip-flop—from the tape reader and that a given input line will contain a
pulse if a hole is in the respective position of the tape.)

7.19 Explain why, in large computer systems, output data to be printed are
generally recorded on magnetic tape for offline printing and not printed at once.

7.20 Which of the sets or errors in Question 7.11 would have been detected if
the error-catching system in Question 7.15 had been used? Which of these sets of
errors in Question 7.15 could have been corrected by the error-detecting and error-
correcting scheme in Question 7.11 and which would only have been detected?

7.21 Is it possible to invent a 7-binary-bit code which includes an odd-parity-
check bit and which contains 70 characters? Give a reason for your answer.

7.22 The code in Question 7.15 is not generally able to correct double errors in
a row or errors in the checking numbers at the end, but will almost always detect
each of these. Explain this statement.

7.23 Show how a teletypewriter would read out the character B if this key were
depressed. Draw the output waveform.

7.24 What is ASCII for ‘‘line feed,”’ which is also LF?
7.25 What is EBCDIC for E?

7.26 Notice that the characters in the magnetic reader character set in Fig. 7.10
are “‘blocked,”” not curved. Why might this be a good idea?

7.27 Notice the difference in a 0, a Q, and an O in Fig. 7.11. Find other letters
that have similar printed shapes and have been altered to make them more machine-
readable.

7.28 What is the difference between an acoustic coupler and a modem?

7.29 Why might it be a good idea for a computer to echo a character struck on
a keyboard it is to read from instead of having the character printed immediately.

7.30 Why are start bits and at least one stop bit necessary for the telctypewnter
code transmission explained for terminals?

7.31 Explain the difference between synchronous and asynchronous transmission
of digital data.
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7.32 Explain how the Bell 103 modem described would send the ASCII character
G on a line in a chosen direction. How would it send in the other direction? Use
the teletypewriter scheme to encode, using start and stop bits.

7.33 Design an A-to-D converter that converts using the successive-approxima-
tion technique.

7.34 Show how long it would take an A-to-D converter using the successive-
approximation technique to convert 7 bits. Assume that it takes 10 ms for the
D-to-A converter-resistor network to stabilize its output. Explain by showing how
conversions are made for three specific input voltages.

7.35 Again assuming that it takes 10 ms for the D-to-A converter network o
stabilize, show how a 6-bit converter uses the successive-approximation techniqi.e
for three voltages +9, +1, and +7 V, assuming a 0- to 10-V range for inputs
(0 and +10 V as voltage levels for the level converter outputs).

7.36 Show how the converter in Fig. 7.28 converts the three voltages in the
preceding question and compare the conversion times.

7.37 Using the information in the preceding three questions, can you compare
the average time for conversion for an A-to-D converter as shown in Fig. 7.28
with that of a successive-approximation converter? Assume 6 bits.

7.38 Show how a flash converter works for a 3-bit 0 to +7 volt system. Draw
the gates from the comparator outputs to the binary numbers.

7.39 Explain how the converter in Figure 7.28 converts +0.5, +3.2, and
+54V.

7.40 Discuss resolution and quantizing error. Can the quantizing error be less
than the resolution? Why or why not?

7.41 Discuss A-to-D converters, bringing out the important characteristics which
must be considered in choosing a converter. What is the primary advantage of a
flash A-to-D converter, and what is its primary disadvantage? Can a flash converter
convert an analog input directly to digital form, using a Gray code instead of
binary? Justify your answer.

7.42 Design a gating network that converts a 3-bit Gray code to a 3-bit conven-
tional binary number. Use only NOR gates in your design.

7.43 A straightforward technique for encoding a keyboard is shown in this chap-
ter. Several other methods are sometimes used, and these are primarily intended
to either reduce the number of semiconductors in the decoder mechanism or sim-
plify the wiring.

One technique involves a two-dimensional array similar to the selection sys-
tems used in memories. The following figure shows a two-dimensional array. The
horizontal wires are connected to the vertical wires by switches which are activated
by keys on the keyboard. Thus depressing a key closes a switch which connects a
single X wire to a single Y wire. Each key which is depressed produces a unique
X wire, or Y wire, combination. Determining which key has been closed, however,
is nontrivial. A common technique is to raise one of the X or horizontal wires and
then scan (i.e., sample) each of the Y wires. If one of the wires is high and the



other wires are low, then the particular intersecticn of the X and Y wires which are
connected can be determined. Sometimes a microprocessor is programmed to gen-
erate the X wire sequence and sample the ¥ wires, but special kevboard encoding
chips are also made for this process. In each case the X wires are normally low
except that, one at a time, the microprocessor, or scanner, raises a single X wire
and then examines each of the Y wires to see whether one is high. If it is, a key
has been depressed, and since the microprocessor is aware of which X wire has
been raised and also which Y wire was raised, it can determine the unique key that
has been depressed. By encoding the X wires with a unique 3-bit code on each
wire and the Y wires with a unique 2-bit code, a unique pair of 5-bit combinations
cap be arranged. For larger keyboards the ASCII code can be used by proper choice
of the X and Y values. Draw a simple 8-character encoder which encodes only 8
of the ASCII characters shown in Fig. 7.7, assigning values to the X and Y access
wires.

TR R IK
TTIRIRIOL
IR
" L bK LK K
IR IR

SRS

Y, Y, Y, Y,

7.44 What is the weight of the least significant bit in a DAC with a resolution
of 6 bits and an output voltage in the range of 0 to +10 V?

7.45 What is the weight of the most significant bit for a DAC with 5 bits of
resolution and an output voltage range of 0 to +5 V?

7.46 If a 6-bit DAC has a 0- to +5-V output range, what is the expected output
for an input of 010101?

7.47 A 7-bit DAC has an output range of 0 to + 10 V. The manufacturer specifies
that the DAC has a monotonic output with perfect values of 0 and +10 V. In
terms of voltage, what is the maximum error that can occur?
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7.48 What is the Gray code for 10111 binary? If the Gray code is 11011, what
is the corresponding binary code?

7.49 Derive a rule for converting from Gray code to binary.

7.50 Draw the waveform from the DAC and input voltage for a 4-bit counter

converter converting the input voltage of +2% V. The conversion range for the
ADCisOto +5V.

7.81 Draw the DAC output waveform for a 5-bit successive-approximation ADC
converting the input voltage of +3% V. The ADC voltage has an input voltage
range of O to +7 V. :

7.52 Design a 4-bit ADC which uses the successive-approximation technique,
showing gates, flip-flops, etc.

7.83 Design a 4-bit tracking ADC using an up-down counter as in Chap 4. The
input voltage range should be 0 to +15 V.

7.84 Lay out the block diagram for a data acquisition system which samples the
output from four DACs connected to temperature-measuring devices and a DAC
connected to an accelerometer in a jet sled. Use sample-and-hold amplifiers, mul-
tiplexers, and an ADC. Have a computer control the sampling.
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BUSES AND INTERTACES

A computer can be conveniently broken into five sections, as explained in Chap.
1. It is necessary to interconnect these sections so that they will operate as a system.
That is the subject of this chapter.

To interconnect memories, 1/O devices, and other sections of a computer,
most often a bus is used. Several examples of buses were given in Chap. 6, and
buses are covered in greater depth in this chapter. When a given 1/O device or
memory is connected to a bus, an interface is required. This interface consists of
the logic necessary for the I/O device or memory to successfully communicate
with the bus. Since each device must be interfaced, there are at least as many
interfaces in a system as there are devices. In general, whenever one part of a
digital system is connected to another, the logic which effects the interconnection
is called the interface.

To describe both buses and interfaces, examples from actual computers and
buses are used. Also, interfaces are developed for a keyboard and printer, and a
program to drive these interfaces is shown.

OBJECTIVES

1 There are several ways to interconnect system components in a computer,
but the most used is a bus. The characteristics of buses are described followed by
the overall organization of several computers and their interconnection strategies.
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FIGURE 8.1

2  When lines on a bus are shared, special circuits are used. These are discussed,

- followed by a description of the operational considerations. Then hand shaking for

a bus and synchronous and asynchronous bus data transfers are discussed.

3 A design for a keyboard and printer interface for a microcomputer is pre-

. sented. Program control of this interface is also described, and program sections

are presented.

4  Input-output interrupts and other bus strategies are described for several sys-
tems. The general-purpose interface bus IEEE Standard 488-1978 is presented.

INTERCONNECTING SYSTEM COMPONENTS

8.1 The components of a computer system, that is, the memories, input-output
devices, etc., must be interconnected to form a computer system. The way these
components are put together and how they communicate with each other profoundly
affect the system’s performance characteristics.

The arithmetic-logic unit and control unit are generally placed physically
together and called the central processing unit (CPU). The CPU is then *‘in charge”’
of the system’s operation, directing the operation of the other parts of the system.

In the earlier computers the CPU was connected directly to each input-output
device and memory unit by a separate cable for each connection.! This is shown
in Fig. 8.1. Then, if a card is to be read from a card reader, the CPU must accept
the information; and if it is to be stored in memory, the CPU must store it. The
CPU is therefore.central and inveolved directly in each transaction.

The above system has the disadvantage of many different cables and consid-
erable interface logic (at each end of each cable).

To make interconnection of the system components less expensive and to
standardize the interface logic used, a very popular technique involves intercon-
necting all components by using a single. bus. This bus consists of a number of

'A cable is a set of electric conductors (wires). Connections are made to a cable only at each of the
two ends. while a bus has conncctions made along the conductors.

Iindividual connec-
tions between-com-
puter system units.

If direct memory access is
provided, then connections
would be made from each
unit to main memory also

IL stands for interface logic
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Bus for DEC PDP-11.

wires, or connections, and in the bus are provisions for addressing the components {a) CPU, memory,
and other devices are

and trapsferring data from or to eaph component. ' connected by a single
Figure 8.2 shows the organization for the DEC PDP-11 bus. which DEC  pys. (5) CPU controls
calls a unibus. Notice that the same wires are used to transfer data from the CPU  transfers of data in
to the high-speed main memory as from the CPU to a tape punch or other input- normal use. (Digital
output device. Equipment Corp.)
In the simplest systems, the CPU is the director of all traffic on the bus. If
a transfer of data must be made from, for instance, a disk pack to the core memory,
then the CPU, under program control, will read each piece of data into its CPU
general registers and then store each piece of data in the core memory.
There is a problem here in the computer’s ability to know when a peripheral
device® has performed a given operation. Suppose we wish to find some data on a
magnetic tape and are unwilling to wait for the tape to be searched. desiring to
perform other calculations while waiting. If the computer must continually look to
see whether the tape drive now has the data available. then time is lost and pro-
gramming complexity is increased. To alleviate this. the computer bus is generally
provided with control lines® which are called interrupt lines, and a peripheral device
can raise one of these lines when it has completed an action and is ready for
attention.
The computer must be provided with some kind of interrupt facility so that

2peripheral devices are the input-output devices. disk packs. tape drives, and other devices not including
the main (IC) memory.

*The lines are normally 0 to raise a line means to p'ace a 1 on it. In microcomputers and minicomputers
there may be only one line. The word lines is often used for the conductors (wires) on a bus. Physically
the lines are electric conductors.
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FIGURE 8.3

Data flow
Unibus

Magnetic tape

DEC bus in DMA
mode. (Digital Equip-
ment Corp.)

it can ‘“‘service’’ the interrupt without losing its place in the program being exe-
cuted. This problem becomes serious in systems where a number of input-output
devices (such as A-to-D converters) must be serviced frequently, and computers
are designed to service these interrupts as efficiently as possible.

Even with a good interrupt facility, the computer is still involved in every
data transfer, and this can be very time-consuming. It is possible to add a direct
memory access (DMA) feature to most systems where a disk pack or tape reader
transfers data directly into high-speed main memory using the bus but without
passing the data through the CPU (see Fig. 8.3). This is done by ‘‘stealing”
memory cycles, called cycle stealing. The CPU is simply held in its present state
for one or more memory cycles while data are transferred from the disk pack
directly into the main memory. The CPU does not “‘see’’ each transfer when it
occurs, but simply continues executing its program, which is slowed down a little
because of the cycle stealing, but not nearly as much as if the CPU had to make
each transfer itself. The CPU must, of course, originate these DMA transfers by
telling where in the disk pack the data are to be read from and into which locations
in the main memory the data are to be read. (Transfers generally can be made in
either direction when the DMA feature is added to a system, that is, for example,
tape to main memory or main memory to tape.)

Because of the econonmy of operation, a bus is now the most used way to
interconnect components of a microcomputer or minicomputer system.

Large systems have quite different problems from very small systems, and
so different interconnection configurations are used. Since large systems contain
many components, they are quite expensive, and it is important to utilize the CPU
and other components to the maximum. Thus the cost of more expensive intercon-
nection configurations is warranted.

As a result, in order to keep large processor configurations such as that shewn
in Fig. 8.4 working at their maximum speeds, the systems are operated in multi-
programming mode. This means that several programs are kept in memory at the
same time. A given program is executed until it demands an input-output device
or perhaps a disk drive. Since these devices are slow compared to the CPU, the
device is started in its function, but then the CPU begins executing another different
program until this program asks for input-output. When this happens, the CPU
begins executing a third program, and this process continues.

When a program completes execution, another program is read in. As can
be seen, the CPU must keep track of where it is in each program and must control
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all the data transfers between system components, but would be hopelessly held
up if it had to participate in each transfer.

One way to configure a large system of this sort is shown in Fig. 8.5, which
illustrates the IBM 3081 configuration. It shows a single CPU and two input-output
processors, one of which IBM calls a multiplexer channel and the other a selector
channel.* Some systems have more input-output processors, and others even have
more than one CPU, in which case the system is called a multiprocessor.

The system operates as follows: All transfers to and from peripheral devices
(such as card readers, printers, tape drives, etc.) are initiated by the CPU telling
an input-output processor what is to be done. The actual transfers are then made
by the special-purpose processors, which work independently of the CPU. To
initiate a data transfer, the CPU tells the input-output processor where in memory
to put (or find) the data, which input-output device to use, and (if necessary) where
in that device the data are located. The actual transfer of data is guided by a channel
program executed by the input-output processor which has been written in advance,
and the CPU also sees that the correct channel program is used.

Once an input-output data transfer has been initiated by the CPU, the CPU
can go about executing other programs. When the input-output processor completes
its work, the CPU is notified so that it can return and continue where it was in the
program which called for the input-output transfer.

Another large computer configuration is that in Fig. 8.6, which shows the

“A multiplexer channel has logic particularly suited to relatively slow devices with random character-
istics. Selector channels are for fast bursts of data generated by disk packs and tape drives, for instance.

Parts of a large gen-
eral-purpose com-
puter. (/BM Corp.)
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organization of the CDC Cyber computer. In this case the input-output operations
are all handled by small *‘computers’” called peripheral processing units (PPUs),
The PPUs have their own memories and programs and work independently of the
Cyber CPU. The way the Cyber commands input-output operations is to ‘‘plant”’
messages in a specified area in its memory, telling what it would like. The PPUs
then search this memory, looking for orders; when they find one, they execute the
necessary operations and plant a message telling the CPU that its orders have been
fulfilled and the necessary operations performed.

Complex structures such as the IBM 3081 and Cyber make good sense be-
cause a number of peripheral or input-output devices can be operating simultane-
ously at the relatively low speeds they can maintain, while the CPU races from
job to job. In this way the overall throughput for the computer system can bé
increased because of the parallel operation of all parts of the system.

The idea of providing several CPUs which execute programs in parallel is
an attractive one. As just mentioned, such systems are called multiprocessor sys-
tems. Again, they have high throughput and make good usage of both large memo-
ries and the several input-output devices.

Figure 8.7 shows how the 8086, 8088, and 8089 microprocessor chips can
be combined with a number of support chips to produce a multiprocessor system.
More 8086 or 8088 CPUs can be added to the multiprocessor as desired, each
using the same configuration.

INTERFACING—BUSES

8.2 When input-output devices, memory devices, the arithmetic-logic unit, and
the control unit are all combined to form a computer system, all these must be
connected. When one device or unit is connected to another, an interface is required
which includes the necessary logic.

The primary disadvantages of using a large number of individual cables to
interconnect parts of a system are cost and complexity. The necessary interface
logic must be repeated for each connection along with cable-driving circuits and
receiving circuits.

As has been stated, a widely used technique to interface modules efficiently
at low cost employs a single bus to interconnect all the units. This is shown in
Fig. 8.8, where the several lines or conductors which form the bus pass through
and connect to a number of units, or modules. In general, each module can read
from or write onto the bus. The bus interface is usually standardized since the same
bus connects all units. Since each unit connects only once to the bus, the amount
of interface circuitry and logic required tends to be lower than for separate con-
nections between units. As a result, buses are widely used in microcomputers and
minicomputers and even in large computer systems for modules where the data
flow is not excessive.

Often the modules which are bused together share the same data lines. Then
it is necessary for each module to be able to both write onto and read from a given
line.
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To share lines on a bus,” a logic circuit called a three-state or tristate driver
is used. The block diagram for the three-state driver is shown in Fig. 8.9(a). There
are IN and ENABLE inputs and a single OUT line. A table showing the operation
of the three-state driver is also given. The three-state driver has three output states:
a 0 output, a 1 output, and a state in which the circuit is effectively disconnected
from the output. In Fig. 8.9(a), where the ENABLE is a 0, the circuit is effectively
disconnected from the OUT line; where ENABLE is a 1, the output is the same
as the input on IN.

Figure 8.9(c) shows a way of loaking at the operation of the three-state driver
in Fig. 8.9(a). When the ENABLE is a 0, the relay is open and so the IN is
disconnected from the output; when the ENABLE is a 1, the relay is closed and
the output is connected to the input, and so the logic values are the same.

The important thing to understand is that if several three-state drivers have
their outputs connected to the same line and if only one of the drivers has as its
ENABLE input a I, then that particular driver will control the state of the line.
When three-state drivers are used for interfaces, only one interface on a line (con-
ductor) must have its ENABLE input a 1 at a given time, and this interface will
control the state of the line.

Inverters or other logic gates can have their inputs connected to a line which
is controlled by several three-state drivers. Generally, manufacturers arrange so
that the three-state driver will drive a line of considerable length and with several
gate inputs connected to it, which is often the case for a bus line.

Figure 8.9(b) shows a three-state driver that inverts its input. The table shows
this: When the ENABLE is a 0, the driver is effectively disconnected from the
output; and when the ENABLE is a 1, the OUT value is the complement of the
IN value.

Figure 8.9(d) shows a functional representation of (b) showing the driver
operates much like an inverter and a relay connected.

Sometimes manufacturers make three-state drivers with a DISABLE input
instead of an ENABLE input [see Fig. 8.9(¢)]. In this case the driver is discon-
nected when the DISABLE input is a I and the output, which is inverted in this
case, is the complament of the input when the DISABLE is a 0.

Three-state drivers are widely used in the interfaces for buses. They enable
control of bus lines to pass from interface to interface as is appropriate.

Figure 8.10 shows a tristate octal D-type latch IC package with eight latches
equipped with tristate drivers. Each latch reads the input at D when the clock input
is high. The outputs from the latches are forced on the outputs ffom the"chip when
the ENABLE is a 1. When the ENABLE is a 0, the outputs represent ‘‘high
impedances’* (and another chip can drive the lines as they are connected to a desired
state). _

Figure 8.11 shows an octal tristate buffer with positive-edge-triggered flip-
flops in which the outputs are forced to the input state only when the ENABLE
input is high (a 1).

Since several units are sharing the same bus lines, the interface procedures
for bused modules must be carefully worked out so that, for instance, two modules

*Three-state drivers are used in many applications other than on buses, but the sharing of a line is
always the reason for their use.
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do not attempt to write data on the bus at the same time and the module for which
the data are intended knows it is the selected module, etc.

BUS FORMATS AND OPERATION

8.3 A number of different types and several different standards for buses exist.
All buses can be divided into three major sections, however: the address, data,
and control sections. This is shown in Fig. 8.12 as are two commonly used ways
to represent multiple lines on a bus. Figure 8.12(a) shows the three sections, using
a wide, ribbonlike representation for the multiple lines (wires). Figure 8.12(b)
shows that sometimes a single printed line is used with a starting slash through the
printed line to indicate that there are actually a number of lines (wires). For both’



(1)

Enable
(3) . .
(7) .
(13)
(14)
(17)
(18)
:i ] (19)
(11)
Clock ———fppo—

391

BUS FORMATS AND
OPERATION

FIGURE 8.11

F.g. 8.12(a) and (b) there are 16 address lines, 8 data lines, and 4 control lines.
Both representations in (a) and (b) are frequently used.

Most buses now use tristate drivers to write data on the data lines. In the
most straightforward systems, the address lines are completely controlled by the
bus master which is generally a niiniprocessor or microprocessor CPU. If there is
a single bus master, the remaining devices connected to the bus are called slaves.
Each slave then has an address number, and the bus master uses the address lines
to control who is to use the bus. In some systems, however, devices other than
the CPU can take control of the bus. In this case, a controlling device is called the
bus master only when it has control, and at that time the responding devices are
called slaves. For buses in which control is shared among several devices (that is,
more than one device can take control of the bus), the address lines also are driven
by tristate drivers.

Octal flip-flop chip
with tristate drivers.
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Address lines (16)

Data lines (8)

Control lines (4)
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Address, data, and
control sections of a
bus. (a) The three
sections of a bus. (b)
Alternative represen-
tation for (a).
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Some of the control lines may be permanentiy controlled by the CPU, and
others may be used by several devices and thus require tristate drivers (or wired
OR or wired AND drivers).

Note that any device can read from a line driven by a tristate driver and
conventional inverters or gates can be connected to these lines. (The only restriction
is that the gates connected to the lines not load the lines unduly.)

Buses transfer information over data wires by using either a synchronous or
an asynchronous technique. Different manufacturers and bus designers have dif-
ferent philosophies about which is better, with the result that there is no standard.

For synchronous transfers, the bus works as follows. Let us assume a CPU
wishes to read and write from peripheral devices. Each devics is given a separate
number, and a device is selected by the CPU placing that number on the address
lines.$

Figure 8.13 shows the timing of synchronous data transfers involving a set
of address wires, data wires, and a READ and WRITE control line. All transfers
are controlled by the CPU. Note that the convention is that the meaning of READ
and WRITE is always relative to the master or CPU on buses. Therefore, a READ
means the CPU (master) reads data from the bus, and a WRITE means the CPU
(master) writes data on the bus.

Figure 8.13 shows that in order to read, the CPU places the number of the
device to be read from on the address lines. Then the CPU lowers’ the READ line,
and the selected device must place data on the DATA lines, which means enabling
its tristate drivers connected to the bus DATA wires. When the READ line goes
back *o a 1, the device must disable its tristate drivers.

When the CPU desires to write data (to give data to a device), the device’s
number is placed on the address line and then the data are placed on the DATA
lines. The CPU lowers the WRITE line to 0, and the device must read the data at

°A disk drive might be given the number 1, a keyboard the number 3, etc.
"It is common practice to use a O signal to activate devices on a bus. This is indicated by the bar over
the name of the line (READ). If a device is activated by a 1 signal, no bar is used.
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that time. The data must have been read when the WRITE line goes back to a 1.
The interface designer must know how long the WRITE will be a 0 so that the
data can be read safely during the time the WRITE line is a 0.

Note here that the device being written into or read from must respond during
the fixed time period permanently established by the CPU. If a READ is performed,
the device must place data on the data lines at once and keep them there while the
READ line is down. Similarly, for a WRITE the device must have already read
the data by the time that the WRITE line goes high.

Synchronous transfers are generally thought to be the fastest way to transfer
data and are used for memory data transfers and sometimes for transferring data
to other types of devices. The problem is that all devices must be able to respond
at the same speed unless the CPU has READ and WRITE signals of different
durations for different devices.® To alleviate this problem (that is, to accommodate
devices with differing response times), the asynchronous transfer technique is often
used.

When an asynchronous bus transfer technique is used, another control line
is required, called DATA VALID OR RECEIVED (see Fig. 8.14). This line is
controlled by the devices and not the CPU, however. And if there is more than
one device on the bus, a tristate driver will be required for each device using this
line.’

The sequence of timing steps performed in Fig. 8.14 is as follows. To read
from the bus, the CPU sets the number of the device on the ADDRESS lines and
then lowers the READ line. The device which is selected then places data on the
DATA lines and a 1 on the DATA VALID OR RECEIVED line. This tells the
CPU that the data are on the lines and can be read. The CPU cannot read from the
DATA lines until the DATA VALID OR RECEIVED line is a 1. If the device is
slow in preparing its data, the CPU must wait until the data are on the DATA lines

8This would be a comblicated strategy. Another bad alternative is for all devices to operate at the speed
of the slowest devices.
°A driver which wire-ORs its output could also be used.

Timing signals for
synchronous trans-
fers.
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and the DATA VALID OR RECEIVED line is raised. Next the CPU reads the
data and raises the READ line to a 1. This means the selected device must keep
its data on the DATA line until READ goes to a 1. The selected device then turns
off its tristate drivers to the DATA lines and lowers the DATA VALID OR RE-
CEIVED line.

A write operation is performed similarly. First the CPU places the number
of the selected device on the ADDRESS line and the data on the DATA lines.
Then the CPU lowers the WRITE line. The selected device now reads the data and
raises the DATA VALID OR RECEIVED line. The CPU must keep its DATA
and ADDRESS lines stable until it receives this signal, so the device can be *‘slow
to read’’ and still get the data. After the CPU receives the DATA VALID OR
RECEIVED high signal, it removes the address and data from the bus and then
raises the WRITE line; this allows the selected device to lower the DATA VALID
OR RECEIVED lines.

The asynchronous procedure involves what is called a handshake. The effect
is that the CPU tells which is selected if it is reading or writing and then waits for
the selected device to respond (with a handshake) before continuing. Thus means
fast and slow devices can be accommodated on the same bus. This is the reason
for the wide use of asynchronous buses.

For both synchronous and asynchronous buses, there are several variations
on Figs. 8.13 and 8.14. Often, instead of separate READ and WRITE lines, a
single R/W line is used (1 for read, O for write) and a separate ADDRESS VALID
line is used to indicate when the address is on the address lines. Sometimes the
DATA VALID and DATA RECEIVED lines are separate. The principles of syn-
chronous and asynchronous data transfers remain, and the combining or splitting
of control lines can be figured out easily if the general principles are understood.

ISOLATED AND MEMORY-MAPPED INPUT-OUTPUT

8.4 Two general techniques for identifying input-output (1/0O) devices have been
the most used for bus operation. The first separates the I/O devices from the
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memory and addresses (or numbers). for I/O devices are separate from memory
addresses; this is often called isolated 1/0. The second, called memorv-mapped
1/0, mixes memory addresses with I/0O device numbers.

In the isolated 1/0O technique, the 1/O devices are each given a separate
number on the bus. For instance, a printer would be assigned device number 3, a
keyboard device number 4, a disk drive device number 5, etc. These numbers are
placed in binary on the address section of the bus when an 1/0 device is to be
read from or written into by the CPU. The I/O devices may even have a separate
1/0 address bus, as shown in Fig. 8.15(a), or the 1/O devices may share the
address section of the bus with memory, as in Fig. 8.15(b). In either case, the 1/0O
device number is placed on the bus by the CPU, and then the control lines tell the
1/0 device whether to place data on the lines, to read data, etc. If the 1/0 devices
share bus lines with the main (IC) memory, the control signals must tell whether
an address on the bus is for I/O devices or for memory.

The 8080 microprocessor is an example of an I/O system which has device
numbers on the address lines that are shared with memory, as in Fig. 8.15(b).
Figure 8.16 shows the sections of the 8080 bus. To read from a memory device,
the 8080 places the memory address to be read from on A, to A,5 and then lowers
MEMR; next the memory places the contents at this address on data wires DB, to
DB,. To write into memory, the 8080 places the address to be written into on A,
to A5 and the data to be written on DB, to DB and lowers MEMW; the data are
then written at the selected location.

The 8080 uses only eight of the address lines Ay to A 5 to select 1/0 devices.
These lines are A, to A;. As a result, only 256 1/0 devices can be used. Suppose

Bus structure for in-
put-output and
memory. (a) Separate
memory and input-
output address lines.
(b) Shared memory
and input-output ad-
dress bus.
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8-bit character (data) on DB, to DB.

a keyboard has device number 3,,. Then to read from the keyboard, the CpPU'"?
places 00000011 on A, to A, and then lowers 1/0 R; next the keyboard places an

As another example, if a printer has device number 5 and the CPU wishes
to print a character, the CPU places 00000101 on A; to Ao, the character on DB,
to DB, and then lowers 1/O W. This bus is synchronous, and so the devices must

read or write data at the specified time because the /O W and I/O R lines are
lowered only for a time determined by the clock rate of the 8080.

The 8080 is only the original member of a line of 8-bit microprocessors
produced by Intel. Other processors have numbers such as 8085, 8089, etc. Each
has particular features. The bus interfaces for each are compatible; however, the
speed of transfer is determined by the clock rate of the particular chip which varies
from device line to device line. (A memory or 1/O device which responds in 100

ns could interface any of the current devices.)

The second general technique for addressing 1/O devices is called memory-
mapped 1/0O. When this is used, the 1/O devices are assigned addresses in memory .
These locations must not conflict with addresses given to memory devices such as
ROM and RAM chips. Then the 1/O devices are read from and written into by

using the same control lines as for the IC memory chips.

The memory-mapped 1/O technique requires making a map of memory show-
ing which locations are devoted to IC memory and which to 1/0 devices. Figure
8.17 shows a memory map for a bus with 16 address bits and 8 data bits. The
computer has a 4K-word read-only memory, a 4K-word random-access memory,
a printer, and a keyboard. The ROM is connected to addresses 0 to 4095 and the

1°The most significant bit is A,; the least significant bit is Ay. For numbers on DB, to. DB, the sign bit '

goes on DB, and the least signficant bit is DB,
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Map of memory lay-

RAM to addresses 4096 to 8191; the keyboard is given locations 9472 and 9473,  °4! for memory-
and the printer is given locations 9671 and 9672. (The keyboard and printer are mapped /0.
each given two locations because each requires a status register, we discuss later.)
The programmer for this system must know where the RAM, ROM, key-
board. and printer are located. To print a character, the particular address allocated
to the printer must be used: to read a character from the keyboard. the address
given to the keyboard must be employed.
Memory-mapped computers have no 1/0 instructions in their list of instruc-
tions. To read a character from a keyboard, the keyboard address is simply used:
any instruction which reads from memory can read from that address. Data from
a keyboard would be added to or ANDed with the current contents of an accu-
mulator by using a single instruction, for example; or a character from the keyboard
could be simply transferred into an accumulator. The PDP-11 series and 6800 and
68000 microprocessors are examples of memory-mapped computers.
In systems having separate 1/0 control lines and device numbers, the CPU
will have specific I/0 instructions. For example, the 8080 has IN and OUT in-
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structions, and these specifically cause transfers to and from 1/O devices. The
programmer must then know the 1/O device numbers and the memory addresses.

Advocates of separate 1/0 point out that interfaces may be simpler and that
programmers’ use of I/0 instructions seems more natural. Advocates of memory-
mapped I/O claim that the CPU is simpler as is the bus and that the instructions
in the CPU for data’manipulation can be used for 1/0 data, simplifying programs.

The 68000 is a memory-mapped and asynchronous microcomputer. A section
of the 68000 bus is shown in Fig. 8.18(a). This is a large bus with 23 address
lines and 16 data lines. There are a number of control signals, five of which are
shown. :

The 68000 has a 16-bit word, which is the normal unit for data transfer.
However, each word is divided into two 8-bit bytes, called the upper byte and
lower byte. Memory and 1/0 reads and writes can transfer either a complete 16-
bit word or an upper or lower byte. To indicate to an 1/O device or memory
whether 1 or 2 bytes are to be transferred, two control signals UDS (upper data
strobe) and LDS (lower data strobe) are used [Fig. 8.18(a)]. If LDS is low, data
are placed on lines D, to D-; if UDS is low, data lines Dy to D5 are used. If both
are low, an entire 16-bit word is transferred.

Figure 8.18(b) shows the timing for both a read and write. Since the 68000
is memory-mapped, 1/O devices use addresses in memory and data transfers to
and from /O devices use the same timing signals as memory transfers.

Let us assume the 68000 wants to read a 16-bit word from a disk drive
interface which uses location 000FF6,,. The timing would be as follows [refer to
Fig. 8.18(b)]:

1 _The 68000 places the address 000FF6 on the address lines and then lowers
—/ﬁ, UDS, and LDS and makes R/V_V al.AO0onAS tells the devices on the bus
that the address on the address lines is valid, both UDS and LDS low indicates all
16 data lines are to be used, and R/W indicates a read operation.

2  The disk drive interface places 16 bits of data on Dy to D,5 and then lowers
DTACK (for data acknowledge), which indicates the data are on lines Dyto Ds.

3  The 68000 reads the data from D, to Ds.

4 The 68000 raises AS to indicate the disk interface can release the data because
they have been read.

5  The disk interface turns off its tristate drivers to lines D, to D5 and raises
DTACK.

"A write is performed similarly. Assume a tape drive interface accepts data
on address 00076F4,,. When data are written into the tape drive interface, the
following occurs:

1 The 68000 places 00076F4 on address lines A, to A,;; places the data to be
transferred on D to D 5; and then lowers AS, UDS, LDS, and R/W. This indicates
that the address is valid, all of Dy to D5 is to be used, and the operation is a write -
operation.
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2  The tape drive interface reads the data from Dyto D,s.

3 After it has the data, the tape drive interface lowers DTACK, to indicate the

data transfer is complete.

4  The 68000 releases its address from the address bus and the data from the

data bus and then raises AS, R/W, UDS, and LDS.

68000 bus signal. (a)
Bus layout. () Read-
write timing.
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Note that these transfers are asynchronous because the I/0 device or memory
must signal the acceptance of data or the placing of data on D, to D5 by using
DTACK. The 68000 will not proceed until DTACK is lowered. This is shown by
“slow read’’ shown where DTACK is not lowered quickly, resulting in a longer
read time.

INTERFACING A KEYBOARD

8.5 Section 7.12 described keyboards. In this section we describe the interfacing
of a keyboard with a bus. The bus to be used is that for the 8080 microprocessor.
The interface developed will be a straightforward typical design.

Figure 8.19 shows the basic bus for an 8080 microprocessor. The 8080 CPU
chip requires a separate chip to generate the clock and several other timing signals.
It will not affect the interface design, but for completeness we show a chip devel-
oped for this purpose, the 8224 clock generator driver.

An 8228 bidirectional bus driver chip is also used in this design.'' The 8080
output lines have limited drive capabilities, and the 8228 bus driver has TTL levels
and drive capabilities which are useful for interfacing. Also. and more importantly,
the 8080 bus uses its data lines D, to D, for transmitting several control signals
(status bits) during an early section of each cycle. These status bits are considered
a part of the bus for the 8080. The 8228 driver strobes these values into flip-tlops
and then outputs them as INTA, MEMR. 1/O R, I/O W. etc.. which are then
considered to be a part of the 8080 system bus.

Notice that the 8080 bus has three basic classes of input-output lines: address
lines A,s to Ay, data lines D, to Dy, and control lines such as WR. DBIN. and
I/O R.

The address signals are used both to address the IC memory and to select
which input device is to be written into or read from. The data lines are bidirec-
tional; that is, data are written into the 8080 CPU chip by using D, to D,,. These
same lines are also used to output data to memories, input-output devices, etc.
Bidirectional lines are widely used in buses for computers. the main advantage
being fewer connections to and from chips and fewer pins on chips. If the data
wires D, to D, were not bidirectional, a set of both eight input wnres dnd eight
output wires would be required instead of the eight bidirectional wires.'

Using bidirectional data lines means that the various system components such
as memories and keyboards must be carefully controlled and timed in their oper-
ations so that only one device writes on a wire at a time and so that system
components know exactly when to examine wires with signals on them.

Each input and output device which interfaces an 8080 system is given a
unique device number. The numbers given devices can have up to 8 bits. Thus
256 different devices can be handled directly.

This is a chip developed by Intel to facilitate interfacing with input-output devices. Often micro-
processor chips have limited power output lines and require extra chips for interfacing.
*Three-state drivers are normally used to drive these lines.



